Design and Simulation of Microfluidic Passive Mixer with Geometric Variation

نویسندگان

  • Shubha Jain
  • H. N. Unni
چکیده

Microfluidic designs are advantageous and are extensively used in number of fields related to biomedical and biochemical engineering. The objective of this paper is to perform numerical simulations to optimize the design of microfluidic mixers in order to achieve optimum mixing. In the present study, fluid mixing in different type of micro channels has been investigated. Numerical simulations are performed in order to understand the effect of channel geometry parameters on mixing performance. A two dimensional “T shaped” passive microfluidic mixer is restructured by employing the rectangular shaped obstacles in the channel to improve the mixing performance. The impact of proper placement of obstacles in the channel is demonstrated by applying the leakage concept. It has been observed that, the channel design with non-leaky obstacles (i.e. without leaky barriers) has presented better mixing performance in contrast to channel design with leaky obstacles (i.e. leaky barriers) and channel design without obstacles. The mixing occurs by virtue of secondary flow and generation of vortices due to curling of fluids in the channel on account of the presence of obstacles. This passive mixer has achieved complete mixing of fluids in few seconds or some milliseconds, which is certainly acceptable to utilize in biological applications such as cell dynamics, drug screening, toxicological screening and others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel vortex mixer actuated by one-shot electricity-free pumps

Effective mixing is vitally important to many microfluidic devices in the areas of biotechnical industries, analytic chemistry and medical industries. However, most micro-mixers require complicated fabrication procedures, possibly inappropriate for practical microfluidic utilization. These mixers generally operate under low Reynolds-number conditions, causing a relatively long reaction time in ...

متن کامل

Design and Simulation of a Clamped-Clamped Micromechanical Beam AM Frequency Mixer-Filter

In the last decade Micromechanical components for communication applications has been fabricated via IC-compatible MEMS technologies. In fact, its most important impact is not at the component level, but rather at the system level, by offering alternative transceiver architectures that reduce power consumption and enhance performance. In this paper a mixer-filter for AM frequency receiver with ...

متن کامل

Design and Development of Mathematical Model for Static Mixer

A numerical model for simulating Residence Time Distribution (RTD) of turbulent flows in helical static mixers is proposed and developed to improve the understanding of static mixers. The results of this model is presented in terms of different volumetric flow rate to illustrate the complicated flow patterns that drive the mixing process i...

متن کامل

UWB Mixer improvement with Regulated Voltage Source

This paper presents a design of an UWB downconversion integrated CMOS resistive ring mixer with Linear Voltage Regulator (LVR), to supply required biasing voltages for the mixer section. The designed mixer circuit has been optimized for using in heart rate extraction system with microwave Doppler radar at 2.4GHz frequency. This mixer needs 2 DC bias voltages equal to 0.5 and 1 volts for its bes...

متن کامل

Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016